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We investigate the stability of systems as a function of the structure of the for- 
ces which may be dissipative, accelerating, gyroscopic, potential and nonconser- 

vative [ 11. 

1. Consider the systems 
z” f Dx’ + Ps = 0 (1.1) 

5” + nx. -I- Px = x (x, x’) 0.2) 
Here and below z is a column matrix with elements x1, . . ., x,; 19 = L)‘, P = -_- 
p’ + 0 are constant ( n X n)-matrices ; X (CC, x’) is a column-matrix with elements 

xi (z, z’), . . ., x n (5, x’) containing Xi, Xi’ in powers not lower than the second, 
where X (0, 0) E 0. The terms Dx’ characterize the dissipative and accelerating 

forces, the terms Px characterize the nonconservative forces, and the terms X (x, x’) 

characterize the nonlinear forces. We follow everywhere the terminology adopted in fl]. 
About systems (1.1) and (1.2) we know: 

1) system (1.1) is not asymptotically stable [Z] ; 
2) systems (1,l) and (1.2) are unstable if 0 s 0 Cl, 3] ; 
3) systems (1.1) and (1.2) are unstable if Sp D < 0 121 ; 
4) system (1.1) is unstable if D is sign-positive and the determinant ( f~ 1 # 0 

c31. 
In [S] it was asserted that system (1.1) is unstable for an even n and a sign-positive 

D. However, the proof carried out in [ 31 is valid only if 1 P 1 # 0 and, moreover, it is 
valid in this case for an arbitrary constant matrix U. 

We consider the characteristic equation (E is the unit matrix) 
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IE3L2fDA$-P1=0 (1.3) 

Theorem 1. Characteristic equation (I, 3) does not possess roots on the imaginary 

axis, which are different from zero. If 1 P 1 p 0, Eq. (1.3) has n roots with positive 
real parts and n roots with negative real parts. 

Proof. Let h = hi (k # 0) b e a root of Eq. (1.3). Then the system 

(- Ek’ + Dki + P) y = 0 

has the nontrivial solution y = a f bi and for k we obtain the equation 

(a - bi)’ (---Ek3 + Dki + P) (a + bi) = 0 

or 

-- (a’& -f- b’Eb) k2 + (a’Da + b’Db) ki + 2a’Pbi = 0 

It is impossible to satisfy this equation for any one real k + 0 since a’&‘a+&‘Eb+=0. 
The first part of the theorem is proved, If 1 P ( # 0, then the equation 

1 El2 + .sDh -+- P 1 = 0 (1.4) 

has no roots whatsoever on the imaginary axis for any E. Since the roots of Eq, (1.4) 
depend continuously on E while Eq. (1.3) is obtained from the equation 

jEA2+Pj=0 CL 5) 

by a continuous change of E in (1.4) from zero to unity, the number of roots of Eq.(1,3) 
with positive real part coincides with the same for Eq, (1.5) which. as is easily proved, 

has n roots with a positive real part and n with a negative real part. The theorem is 
proved. 

Corollary 1. Systems (1.1) and (1.2) are unstable if SpD = 0. 
In fact, from Theorem 1 it follows that Eq. (1.3) always has roots with nonzero real 

part. Since 2n 

r, Rehi=--SpD=O 
i=l 

among the roots of characteristic equation (1.3) there always are roots with positive 
real part, which proves the instability of systems (1.3) and (X.2), 

Corollary 2, Systems(l.l)and(l.2) are unstable if / P f # 0. 
Theorem 2, System (1.1) is always unstable. 
Proof. If / (- / =#= 0, the instabili~ of system (1,l) is already proved. We merely 

note that in this case the instability of system (1,l) can be proved also using the Liapu- 
nov’s first instability theorem by considering the function 

V =I x’E.x’ + f 1.’ DJ: _i- EX’PX’ +- + x”Dx’ 

whose total time derivative by virtue of system (1.1) 

v’ = lc*’ (E - ED~) 5’ + E (Ps)’ Px 

is positive-definite for a sufficiently small E > 0. 
Suppose that 1 P 1 = 0. In this case, system (1.1) can be written in the form [4] 

*. 
y + D,y 

. -c PlY = 0 
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by means of the transformation z = Ty, where 2’ is a constant orthogonal matrix. 
Here the blocks P,,, P,,,, P,,, are identically zero, while 1 P,,, 1 > 0; the sub- 
scripts r, 4 indicate the dimensions of the blocks ; r + q = n. Let 

D1 ==!I u”:: :::I I/ 

in correspondence with P, : 
a) 1 D,, 1 # 0. In this case it can be shown that Eq. (1.4) has precisely r,zero 

roots for any E + 0. Equation (1.5) has q roots with positive real part and, therefore, 
characteristic equation (1.3) also has at least q roots with positive real part, which can 

be perceived by changing E from zero to unity in Eq. (1.4). Thus, system (1.1) is un- 
stable in this case too. 

b) 1 D,, ( = 0. In this case system (1.6) has solutions of the form 

y=at+b (1.7) 

where the constant column-matrices a and b are chosen as follows. The column-mat- 
rix a has the form a = (a,, O), where a, is a nonzero solution of the system Drrz = 
0. The column-matrix b is a solution of the system Prz + D,a = 0 which in the 

case under consideration always has a nonzero solution. The presence of solutions of 

form (1.7) proves the instability of system (1.6) and, hence, of system (1.1) when 

1 P I = 0, I D,, I = 0. The theorem is proved. 
Corollary. System(1.2)is unstable when 1 P 1 = 0, I D,, I # 0. 
Remaining uninvestigated is the possibility of stabilizing system (1.1) by nonlinear 

forces X (z, SJ in the case when I P I = 0, 1 D,, I = 0, Sp D > 0. 
Example 1. Let matrix D in system (1.2) be positive definite. Then system 

(1.2) is unstable. In fact, in this case II),, 1 > 0 for any possible 7, being the principal 

diagonal minor of a positive-definite matrix D,, and, in accordance to what we have 

proved, system (1.2) is unstable. 

2. Consider the systems 

x” + Gx’ + Px = 0 (2.1) 

x" + Gx' + Px = X (x, x') (2.2) 

where G is a constant skew-symmetric ( n X n)-matrix and the matrix P is the 
same as in system (1.1). The terms Gx’ characterize gyroscopic forces. About sys- 

tems (2.1) and (2.2) we know: 
1) system (2.1) is not asymptotically stable [Z] ; 
2) system (2.1) with P E 0 is stable if and only if 1 G 1 # 0 [Z]. 

Consider the characteristic equation 

IEh2 + GA + P I = 0 (2.3) 

Theorem 3. Systems (2.1) and (2.2) are unstable if G = kP, P + 0, k is an 

arbitrary constant. 
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Proof. As in the proof of Theorem 1 we can show that in the case given Eq. (2.3) 

does not possess roots on the imagina~ axis, which are different from zero. This together 

with the condition Re h, f Re h, + . . . + Re hzn = 0 proves the theorem. 

Corollary. Systems (2.1) and (2.2) with n = 2 and P qk 0 are always unstable. 
Theorem 4. System (2.1) is unstable if matrices C; and P commute and P* 0. 
This theorem is a corollary of Chetaev’s instability theorem [5] which is satisfied by 

the function 

Theorem 5. System (2.2) is unstable if the matrices G and P commute and 

IP I+O. 
Proof. Consider the function 

V = EX' Er' + dPx' +$z'PGz (2.4) 

whose total time derivative by virtue of system (2.2) is 

V’ = & 
( 
x* + -+Gx)’ (x’ + +Gx) + -$- X’GGX + (Px)' Px + 

x'(eE + P)X(x, x'} 

Ob~o~ly, function (2.4) satisfies the hypotheses of Liapunov’s insability theorem for a 

sufficiently small E > 0 ; this proves the theorem. 
Theorem 6. System (2.1) is always unstable for odd n. 

Proof. The determinants 1 G I= 1 P 1 = 0 for odd n . As in the proof of Theo- 

rem 2 we can show that in this case system (2.1) always has solutions of form (X.7). and 
that proves the theorem. 

We consider three examples. 

Example 2. The system 

21” + g1r; + g,z,’ = 0 
. . (2.5) 

22 - Wl’ -t- gs53. + pr, = 0 
. . 

X3 - g,x,” - g,x,’ - px, = 0 

where p # 0, covers [4] all systems of form (2.1) when n = 3. According to Theorem 
6 it is unstable since it has solutions of form (1.7) 

z1 = at + b, 5% = - ng, I p, x3 = agl /P 

where a # 0. The characteristic equation of system (2.5) with gs # 0 has roots with 

positive real part ; this implies the im~sibili~ of stabilizing it by nonlinear forces. 
However, if 83 = 0, such a stabilization is possible under the condition glz + g,2 > 4~2. 

Example 3. Consider system (2.1) in which 

0 1 0 0 00 00 

G= 
-1 0 3 1 0 0 0 0 

0 -3 0 0 i’=oo 06 
i o---100 ao 0 -6 0 

If we set P z 0 or G z 0, we obtain, respectively, a purely gyroscopic unstable ( 1 G ) = 
0) system or a purely nonconservative unstable system. The system’s characteristic 

equation is 
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h* (h2 + 2) (V + 3) (?L* + 6) = 0 

Obviously, instability can occur only in connection with a double zero root, i.e. because 
of the possibility of the existence of a solution of form (1.7) 

xi = nit +. b. 
z (i = 1, . ., 4), 

i=l 

Substituting this solution into the system, we find that a1 = a, = uQ -= Q = 0. Thus 

the system is stable. Example 3 proves the possibility of a gyroscopic stabilization of a 
purely nonconservative unstable system in the case 1 P 1 = 0 and the possibility of sta- 
bilizing a purely gyroscopic unstable system by nonconservative forces. 

Example 4. Consider system (2.1) in which 

11 0 n (0 g’ Ii I I (11 0 0 
g- 0 

G = ;; _ f_ ,, 0 . 
- ,” 0 0 0 

I’ == rl 0 0 PZ 
- gf 0 II IO 0 0 -p 0 

Here we set 
/. 

gf Z 
V 

Ilt r/?iiKU v-1991 f 1/425137 
__.)I* p1= 

sr/:s ’ 
I’“- = 4 1/6 p1-1 

Then the system’s characteristic equation 

(A2 + 1) (?*a + 2) (12 f 3) (IL2 + 16) = 0 

has distinct purely-imaginary roots, which implies that the system is stable. This exam- 

ple proves the possibility of gyroscopic stabilization of a purely nonconservative unstable 
system when 1 P 1 # 0. 

Examples 3 and 4 refute the assertion in [6] that it is impossible to stabilize a purely 
nonconservative system by gyroscopic forces alone. 

3. Consider the systems 

X” +- DX’ -t Fx + Px = 0 (3.1) 

x” + Dx’ $- Fx + Px = x (x, x’) (3.2) 

where F = F’ qk 0 is a constant ( n X n)-matrix, while matrices D and P are 

the same as in system (1.1). 
About systems (3.1) and (3.2) we know : 

1) systems (3.1) and (3.2) are unstable if Sp D < 0 [2] ; 
2) systems (3.1) and (3.2) are unstable for odd n if F is negative definite [Z] ; 
3) systems (3.1) and (3.2) are unstable if n is even, F is negative definite, and 

D is positive definite [ 21 ; 
4) statement (3) is valid also for a sign-positive D [ 31; 
5) if D G 0, system (3.1) is not asymptotically stable but can be stable [l, 21; 
6) systems (3.1) and (3.2) are unstable if D E 0 and the Poincare coefficients 

are equal to each other [ 1, 31. 
The proof of statement (3) suggested in [2] is valid also for a sign-positive D (D f 

0). The proof of statement (4) suggested in [3] is valid for any constant matrix D. 

Consider the characteristic equation 
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(3.3) 

Theorem 7. If matrix F is negative definite, then Eq. (3.3) has half its roots 
with positive real part and half with negative part. 

Proof. As in the proof of Theorem 1 we show that the equation 

t EL2 i- ED?, + F --j- EP 1 = 0 (3.4) 

does not have roots on the imaginary axis for any real E if F is negative definite. 

Varying E in Eq. (3.4) from zero to unity, we establish the theorem’s validity. 
Corollary. Systems (3.1) and (3.2) are unstable if P’ is negative definite. 
Suppose that the matrices F and P in system (3.2) depend on 2, z‘, t. 
Theorem 8. If the matrix F (x, CC’, t) satisfies the generalized Sylvester crite- 

rion Cl] for a negative-definite quadratic form, then system (3.2) is unstable. 
Proof. The validity of this theorem can be established using Liapunov’s first insta- 

bility theorem which is satisfied by the function 

v = X’EX’ + ;xYJx 

Example 5. Consider the system 

11” + b,z,’ + cr5, = 0 
(3.5) 

zp’. + b,z;’ + czxz -;: tJ 

b,b, < 6, ~1 < 0, ~2 < 0 

The possibility of a gyroscopic stabilization of the unstable system (3.5) was shown in 
[2] on the example of the gyro-stabilized monorail carriage. If follows from the corol- 

lary of Theorem 7 that system (3.5). as well as a monorail carriage, cannot be stabilized 
only by nonconservative forces, when the gyroscope is at rest (independently of the non- 
linear terms X (z, x’)). 

Theorem 9. System (3.1) is unstable if D I_ 0 and Sp F < 0. 
Proof. Let us examine the system’s characteristic equation which in the case n = 

0 has the form 
VI’ + u&+2 i_ 0 0 . -t l$n = 0 (3.6) 

We can show that a2 = Sp F. If Sp F < 0, Eq. (3.6) must have roots with positive 

real part, which proves the theorem in this case. Let Sp F = 0 and let system (3.1) 
be stable. Then all roots of Eq. f3.6) must have the form hj = f kji (j = 1, . . . , FZ), 
while the equation itself can be written as 

(h” + h-i”) (P + k,“) . . . (h2 + l&&y = 0 

whence we obtain 

h.i2 -i_ kz2 + . . . + Ii,,” z ~2 = Sp F = 0 

From the last equality it follows that under the assumptions made all the roots of Eq. 

(3.6) equal zero, but then it is easily shown that system (3.1) is unstable. The contra- 
diction obtained also proves the theorem in this case. 

Corollary. System (3.2) is unstable if _D = 0 and Sp F < 0 * 
Problem. Under what conditions can the unstable system 

x** + Fx = 0 (3.7) 
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be stabilized by nonconservative forces, i. e. how can we select a constant skew-symmet- 
ric matrix P so that the system 

x” + Fx + P.L: = 0 (3.8) 
is stable ? 

From Theorem 9 it follows that such a stabilization can be possible only under the 

condition 
SpF>O (3.9) 

We see from the results presented in [ 11 (pp. 198, 199) that the following theorem holds. 

Theorem 10. The unstable system (3.7) with n = 2 can be stabilized by non- 

conservative forces if and only if inequality (3.9) is fulfilled. 
We have proved below that Theorem 10 is also valid for n = 3. In fact, without loss 

of generality, in systems (3.7) and (3.8) we set 

f, 0 0’ 0 1'1 I4 

F= 0 j, 0 , P= - Pl CJ P3 

0 0 f3 - P? - P3 0 

where the inequalities 

fl a fz a f3, f3 G 0 (3.10) 

hold. If the inequality fz + f3 -2 0 is fulfilled, then we set pr = pz = 0 and the 
question reduces to the already considered case of n = 2. Therefore, it is sufficient to 

examine the case 
f‘2 + f3 < 0 (3.11) 

The characteristic equation of system (3.8) is 

f (y) = y3 + a,y2 + a,y + a3 = 0 (y = A’> (3.12) 
where 

a1 = fl -t fz + f3, a2 = ~~3 t ~~~~ + p3s + flf2 + f,f3 + fg:, (3.13) 

a3 = f3pL’? + fzp22 + flp32 + AM3 

The system is stable if Eq. (3.12) has distinct negative roots. We set 

a2 = 1/4a12, a3 = 1/l"8Q3 (3.14) 

Then we can verify that all the conditions for the negativity of the roots of Eq. (3.12) 
n] are fulfilled if inequality (3.9) is fulfilled. Direct verification shows that the roots 

of the equation f' (y) = 0 are not roots of Eq. (3.12), i. e. all roots of Eq. (3.12) are 
distinct. Thus, system (3. 8) is stable if conditions (3.9), (3.14) are fulfilled. Setting 
pz = 0 and using (3.13) condition (3.14) can be written as a linear system inp12,p32. 
When conditions (3.9X (3.11) are fulfilled this system has a unique positive solution, 
which completes the proof of Theorem 10 for ?r = 3. 

We note that the question of stabilizing a purely nonconservative system (3.8) with 
F z 0 by potential forces reduces [4] to the case of n = 2 and always has a positive 
solution, i. e. the following theorem is valid. 

Theorem 11. A purely nonconservative system can always be stabilized by poten- 

tial forces. 
Example 6. A particle of unit mass is elastically connected with the axes of a 
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fixed coordinate system Uxyz. The particle’s equations of motion are 

The origin 0 is a trivial equilibrium position, unstable under conditions (3. lo), (3.11). 

Let us assume that condition (3.9) is fulfilled, Then, according to what we have proved 
above,this equilibrium position can be made stable if to the potential fortes acting on the par- 

ticle we add a nonconse~ative force P per~ndicular to the particle’s radius-vector 

with projections on the coordinate axes P, = - ply, P, = plx - p3z, PZ = p3y, where 

pi, p3 satisfy system (3.14) (pz = Ul. 
The author thanks V, V. Rumiantsev for posing the problem and for attention to the 

work. 
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The motion of gas in that region of curved hypersonic shock wave, where the 
angle of inclination z of the latter to the velocity vector of the unperturbed 
stream is small, is analyzed with the use of Navier-Stokes equations. The num- 
ber of terms retained in expansions of unknown functions in powers of T is such 

as to permit the extension of solution into a new inviscid region by using the 
method of matching outer and inner asymptotic expansions. The statement of 
the problem in the new region is disting~shed by that functions are specified at 
a point not by their values but by Tayior series. 

1, Boric ~ttlmatsr and the form of scymptotic sxpsnaiona in 
ths rsgfon of the shock wavu for x--f cc. Let us consider the hypersonic 
flow of perfect gas of constant specific heats cp and co. We denote the density of gas 


